Государственное бюджетное общеобразовательное учреждение Самарской области средняя общеобразовательная школа с. Старое Ермаково муниципального района Камышлинский Самарской области

Проверено	Утверждено
Зам. директора по УВР	приказом № 30 - од
	от «30» августа 2023 г.
(подпись) (ФИО) «30» августа 2023 г.	Директор/Р.Х.Гимадиева/ (ФИО)
БАЗОВОГО И УГЛУБЛЕННОГО	ИРОВАННАЯ РАБОЧАЯ ПРОГРАММА ИЗУЧЕНИЯ ПРЕДМЕТА «МАТЕМАТИКА»
Предмет (курс)Математика	
Класс10-11	
Общее количество часов по учебно	му плану <u>340(база) и 544(угл.)</u>
Составлена в соответствии с Федер по математике. (наименование предмета)	альной рабочей программой
Учебники: Математика: алгебра	и начала математического анализа
геометрия.	
Авторы: Часть 1: Мордкович А.Г.,	Семенов П.В.; Часть 2: Мордкович А.Г. и
другие; под редакцией Мордков	ича А.Г; Атанасян Л.С., Бутузов В.Ф.
Кадомцев С.Б. и другие	
Наименование:	
Издательство, год: Москва «Просвет	цение», 2022
Рассмотрена на заседании МО _естество	енно-математического цикла (название методического объединения)
Протокол № 1 от «28» августа 2023 г.	(,
Руководитель МО	/Абдуллоева А.А./ (ФИО)

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА ОБЩАЯ ХАРАКТЕРИСТИКА УЧЕБНОГО ПРЕДМЕТА «МАТЕМАТИКА»

Данная программа служит основанием для учителя по разработке рабочей программы по математике в классах, где реализуется мультипрофильный учебный план. В разделе «Тематическое планирование» содержание обучения синхронизировано для параллельного изучения обучающимися предмета как на базовом, так и на углубленном уровне. Тематическое планирование составлено по учебным курсам «Алгебра и начала математического анализа» и «Геометрия». Учебный курс «Вероятность и статистика» не может быть синхронизирован, так как имеет разное предметное содержание, которое изучается в объеме одинакового учебного времени.

Синхронизированная рабочая программа по учебному предмету «Математика» базового и углублённого уровня для обучающихся 10-11 классов разработана на основе государственного образовательного Федерального стандарта среднего образования, учётом современных требований, мировых предъявляемых математическому образованию, и традиций российского образования. Реализация программы обеспечивает овладение ключевыми компетенциями, составляющими основу для саморазвития и непрерывного образования, общекультурного, целостность личностного и познавательного развития личности обучающихся.

В рабочей программе учтены идеи и положения «Концепции развития математического образования в Российской Федерации». В соответствии с названием концепции математическое образование должно, в частности, решать задачу обеспечения необходимого стране числа выпускников, математическая подготовка которых достаточна для продолжения образования по различным направлениям, включая преподавание математичи, математические исследования, работу в сфере информационных технологий и др., а также обеспечения для каждого обучающегося возможности достижения математической подготовки в соответствии с необходимым ему уровнем. Именно на решение этих задач нацелена рабочая программа углублённого уровня.

В эпоху цифровой трансформации всех сфер человеческой деятельности невозможно стать образованным современным человеком без хорошей математической подготовки. Это обусловлено тем, что в наши дни растёт число специальностей, связанных с непосредственным применением математики: и в сфере экономики, и в бизнесе, и в технологических областях, и даже в гуманитарных сферах. Таким образом, круг обучающихся, для которых математика становится значимым предметом, фундаментом образования, существенно расширяется. В него входят не только обучающиеся, планирующие заниматься творческой и исследовательской работой в области математики, информатики, физики, экономики и в других областях, но и те, кому математика нужна для использования в профессиях, не связанных непосредственно с ней.

Прикладная значимость математики обусловлена тем, что её предметом являются фундаментальные структуры нашего мира: пространственные формы и количественные отношения, функциональные зависимости и категории неопределённости, от простейших, усваиваемых в непосредственном опыте, до достаточно сложных, необходимых для развития научных и технологических идей. Без конкретных математических знаний затруднено понимание принципов устройства и использования современной техники, восприятие и интерпретация разнообразной социальной, экономической, политической информации, малоэффективна повседневная практическая деятельность. Во многих сферах профессиональной деятельности требуются умения выполнять расчёты, составлять алгоритмы, применять формулы, проводить геометрические измерения и построения, читать, обрабатывать, интерпретировать и представлять информацию в виде таблиц, диаграмм и графиков, понимать вероятностный характер случайных событий.

Одновременно с расширением сфер применения математики в современном обществе всё более важным становится математический стиль мышления, проявляющийся

в определённых умственных навыках. В процессе изучения математики в арсенал приёмов и методов мышления человека естественным образом включаются индукция и дедукция, обобщение и конкретизация, анализ и синтез, классификация и систематизация, абстрагирование и аналогия. Объекты математических умозаключений, правила их конструирования раскрывают механизм логических построений, способствуют выработке умения формулировать, обосновывать и доказывать суждения, тем самым формируют логический стиль мышления. Ведущая роль принадлежит математике в формировании алгоритмической компоненты мышления и воспитании умений действовать по заданным алгоритмам, совершенствовать известные и конструировать новые. В процессе решения задач — основы для организации учебной деятельности на уроках математики — развиваются творческая и прикладная стороны мышления.

Обучение математике даёт возможность развивать у учащихся точную, рациональную и информативную речь, умение отбирать наиболее подходящие языковые, символические, графические средства для выражения суждений и наглядного их представления.

Необходимым компонентом общей культуры в современном толковании является общее знакомство с методами познания действительности, представление о предмете и методе математики, его отличиях от методов естественных и гуманитарных наук, об особенностях применения математики для решения научных и прикладных задач. Таким образом, математическое образование вносит свой вклад в формирование общей культуры человека.

Изучение математики способствует эстетическому воспитанию человека, пониманию красоты и изящества математических рассуждений, восприятию геометрических форм, усвоению идеи симметрии.

ЦЕЛИ ИЗУЧЕНИЯ УЧЕБНОГО ПРЕДМЕТА «МАТЕМАТИКА»

Приоритетными целями обучения математике в 10—11 классах как на базовом, так и на углубленном уровнях являются:

- формирование центральных математических понятий (число, величина, геометрическая фигура, переменная, вероятность, функция), обеспечивающих преемственность и перспективность математического образования обучающихся;
- подведение учащихся на доступном для них уровне к осознанию взаимосвязи математики и окружающего мира, понимание математики как части общей культуры человечества;
- развитие интеллектуальных и творческих способностей учащихся, познавательной активности, исследовательских умений, критичности мышления, интереса к изучению математики;
- формирование функциональной математической грамотности: умения распознавать математические аспекты в реальных жизненных ситуациях и при изучении других учебных предметов, проявления зависимостей и закономерностей, формулировать их на языке математики и создавать математические модели, применять освоенный математический аппарат для решения практико-ориентированных задач, интерпретировать и оценивать полученные результаты.

Основные линии содержания курса математики в 10—11 классах: «Числа и вычисления», «Алгебра» («Алгебраические выражения», «Уравнения и неравенства»), «Начала математического анализа», «Геометрия» («Геометрические фигуры и их свойства», «Измерение геометрических величин»), «Вероятность и статистика». Данные линии развиваются параллельно, каждая в соответствии с собственной логикой, однако не независимо одна от другой, а в тесном контакте и взаимодействии. Кроме этого, их объединяет логическая составляющая, традиционно присущая математике и пронизывающая все математические курсы и содержательные линии. Сформулированное

в Федеральном государственном образовательном стандарте среднего общего образования требование «владение методами доказательств, алгоритмами решения задач; умение формулировать определения, аксиомы и теоремы, применять их, проводить доказательные рассуждения в ходе решения задач» от носится ко всем курсам, а формирование логических умений распределяется по всем годам обучения на уровне среднего общего образования.

МЕСТО УЧЕБНОГО ПРЕДМЕТА «МАТЕМАТИКА» В УЧЕБНОМ ПЛАНЕ

В соответствии с Федеральным государственным образовательным стандартом среднего общего образования математика является обязательным предметом на данном уровне образования. Настоящей рабочей программой предусматривается изучение учебного предмета «Математика» в рамках трёх учебных курсов: «Алгебра и начала математического анализа», «Геометрия», «Вероятность и статистика». Формирование логических умений осуществляется на протяжении всех лет обучения в старшей школе, а элементы логики включаются в содержание всех названных выше курсов.

Основными линиями содержания математики в 10-11 классах являются: «Числа и вычисления», «Алгебра» («Алгебраические выражения», «Уравнения и неравенства»), «Начала математического анализа», «Геометрия» («Геометрические фигуры и их свойства», «Измерение геометрических величин»), «Вероятность и статистика». Содержательные линии развиваются параллельно, каждая в соответствии с собственной логикой, однако не независимо одна от другой, а в тесном контакте и взаимодействии. Их логическая составляющая, традиционно присущая пронизывающая все математические курсы и содержательные линии. Сформулированное в ФГОС СОО требование «владение методами доказательств, алгоритмами решения задач, умение формулировать определения, аксиомы и теоремы, применять их, проводить доказательные рассуждения в ходе решения задач» относится ко всем учебным курсам, а формирование логических умений распределяется по всем годам обучения на уровне среднего общего образования.

В учебном плане на изучение математики в 10—11 классах отводится 5 учебных часов в неделю на базовом уровне в течение каждого года обучения, всего 340 учебных часов, и 8 учебных часов в неделю на углубленном уровне в течение каждого года обучения, всего 544 учебных часов.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОГО ПРЕДМЕТА «МАТЕМАТИКА»

Освоение учебного предмета «Математика» должно обеспечивать достижение на уровне среднего общего образования следующих личностных, метапредметных и предметных образовательных результатов:

ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ

Личностные результаты освоения программы учебного предмета «Математика» характеризуются:

Гражданское воспитание:

сформированностью гражданской позиции обучающегося как активного и ответственного члена российского общества, представлением о математических основах функционирования различных структур, явлений, процедур гражданского общества (выборы, опросы и пр.), умением взаимодействовать с социальными институтами в соответствии с их функциями и назначением.

Патриотическое воспитание:

сформированностью российской гражданской идентичности, уважения к прошлому и настоящему российской математики, ценностным отношением к достижениям российских математиков и российской математической школы, к использованию этих достижений в других науках, технологиях, сферах экономики.

Духовно-нравственного воспитания:

осознанием духовных ценностей российского народа; сформированностью нравственного сознания, этического поведения, связанного с практическим применением достижений науки и деятельностью учёного; осознанием личного вклада в построение устойчивого будущего.

Эстетическое воспитание:

эстетическим отношением к миру, включая эстетику математических закономерностей, объектов, задач, решений, рассуждений; восприимчивостью к математическим аспектам различных видов искусства.

Физическое воспитание:

сформированностью умения применять математические знания в интересах здорового и безопасного образа жизни, ответственного отношения к своему здоровью (здоровое питание, сбалансированный режим занятий и отдыха, регулярная физическая активность); физического совершенствования, при занятиях спортивно-оздоровительной деятельностью.

Трудовое воспитание:

готовностью к труду, осознанием ценности трудолюбия; интересом к различным сферам профессиональной деятельности, связанным с математикой и её приложениями, умением совершать осознанный выбор будущей профессии и реализовывать собственные жизненные планы; готовностью и способностью к математическому образованию и самообразованию на протяжении всей жизни; готовностью к активному участию в решении практических задач математической направленности.

Экологическое воспитание:

сформированностью экологической культуры, пониманием влияния социально-экономических процессов на состояние природной и социальной среды, осознанием глобального характера экологических проблем; ориентацией на применение математических знаний для решения задач в области окружающей среды, планирования поступков и оценки их возможных последствий для окружающей среды.

Ценности научного познания:

сформированностью мировоззрения, соответствующего современному уровню развития науки и общественной практики, пониманием математической науки как сферы человеческой деятельности, этапов её развития и значимости для развития цивилизации; овладением языком математики и математической культурой как средством познания мира; готовностью осуществлять проектную и исследовательскую деятельность индивидуально и в группе.

МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

результаты программы учебного Метапредметные освоения предмета «Математика» характеризуются универсальными познавательными овладением универсальными действиями, коммуникативными действиями, универсальными регулятивными действиями.

1) Универсальные познавательные действия, обеспечивают формирование базовых когнитивных процессов обучающихся (освоение методов познания окружающего мира; применение логических, исследовательских операций, умений работать с информацией).

Базовые логические действия:

- выявлять и характеризовать существенные признаки математических объектов, понятий, отношений между понятиями; формулировать определения понятий; устанавливать существенный признак классификации, основания для обобщения и сравнения, критерии проводимого анализа;
- воспринимать, формулировать и преобразовывать суждения: утвердительные и отрицательные, единичные, частные и общие; условные;
- выявлять математические закономерности, взаимосвязи и противоречия в фактах,

- данных, наблюдениях и утверждениях; предлагать критерии для выявления закономерностей и противоречий;
- делать выводы с использованием законов логики, дедуктивных и индуктивных умозаключений, умозаключений по аналогии;
- проводить самостоятельно доказательства математических утверждений (прямые и от противного), выстраивать аргументацию, приводить примеры и контрпримеры;
- обосновывать собственные суждения и выводы;
- выбирать способ решения учебной задачи (сравнивать несколько вариантов решения, выбирать наиболее подходящий с учётом самостоятельно выделенных критериев).

Базовые исследовательские действия:

- использовать вопросы как исследовательский инструмент познания; формулировать вопросы, фиксирующие противоречие, проблему, устанавливать искомое и данное, формировать гипотезу, аргументировать свою позицию, мнение;
- проводить самостоятельно спланированный эксперимент, исследование по установлению особенностей математического объекта, явления, процесса, выявлению зависимостей между объектами, явлениями, процессами;
- самостоятельно формулировать обобщения и выводы по результатам проведённого наблюдения, исследования, оценивать достоверность полученных результатов, выводов и обобщений;
- прогнозировать возможное развитие процесса, а также выдвигать предположения о его развитии в новых условиях.

Работа с информацией:

- выявлять дефициты информации, данных, необходимых для ответа на вопрос и для решения задачи;
- выбирать информацию из источников различных типов, анализировать, систематизировать и интерпретировать информацию различных видов и форм представления;
- структурировать информацию, представлять её в различных формах, иллюстрировать графически;
- оценивать надёжность информации по самостоятельно сформулированным критериям.
- 2) Универсальные коммуникативные действия, обеспечивают сформированность социальных навыков обучающихся.

Общение:

- воспринимать и формулировать суждения в соответствии с условиями и целями общения:
- ясно, точно, грамотно выражать свою точку зрения в устных и письменных текстах, давать пояснения по ходу решения задачи, комментировать полученный результат;
- в ходе обсуждения задавать вопросы по существу обсуждаемой темы, проблемы, решаемой задачи, высказывать идеи, нацеленные на поиск решения;
- сопоставлять свои суждения с суждениями других участников диалога, обнаруживать различие и сходство позиций;
- в корректной форме формулировать разногласия, свои возражения;
- представлять результаты решения задачи, эксперимента, исследования, проекта;
- самостоятельно выбирать формат выступления с учётом задач презентации и особенностей аудитории.

Сотрудничество:

- понимать и использовать преимущества командной и индивидуальной работы при решении учебных задач;
- принимать цель совместной деятельности, планировать организацию совместной работы, распределять виды работ, договариваться, обсуждать процесс и результат работы; обобщать мнения нескольких людей;

- участвовать в групповых формах работы (обсуждения, обмен мнений, «мозговые штурмы» и иные);
- выполнять свою часть работы и координировать свои действия с другими членами команды; оценивать качество своего вклада в общий продукт по критериям, сформулированным участниками взаимодействия.
- 3) Универсальные регулятивные действия, обеспечивают формирование смысловых установок и жизненных навыков личности.

Самоорганизация:

— составлять план, алгоритм решения задачи, выбирать способ решения с учётом имеющихся ресурсов и собственных возможностей, аргументировать и корректировать варианты решений с учётом новой информации.

Самоконтроль:

- владеть навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов;
- владеть способами самопроверки, самоконтроля процесса и результата решения математической задачи;
- предвидеть трудности, которые могут возникнуть при решении задачи, вносить коррективы в деятельность на основе новых обстоятельств, данных, найденных ошибок, выявленных трудностей;
- оценивать соответствие результата цели и условиям, объяснять причины достижения или недостижения результатов деятельности, находить ошибку, давать оценку приобретённому опыту.

ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

Предметные результаты освоения рабочей синхронизированной рабочей программы по математике представлены для 10-11 классов в рамках курсов «Алгебра и начала анализа» и «Геометрия».

СИНХРОНИЗИРОВАННАЯ ПРОГРАММА УЧЕБНОГО КУРСА «АЛГЕБРА И НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА» ДЛЯ БАЗОВОГО И УГЛУБЛЕННОГО УРОВНЕЙ ЦЕЛИ ИЗУЧЕНИЯ УЧЕБНОГО КУРСА

Курс «Алгебра и начала математического анализа» является одним из наиболее значимых в программе старшей школы, поскольку, с одной стороны, он обеспечивает инструментальную базу для изучения всех естественнонаучных курсов, а с другой стороны, формирует логическое и абстрактное мышление учащихся на уровне, необходимом для освоения информатики, обществознания, истории, словесности и других дисциплин. В рамках данного курса учащиеся овладевают универсальным языком современной науки, которая формулирует свои достижения в математической форме.

Курс алгебры и начал математического анализа закладывает основу для успешного овладения законами физики, химии, биологии, понимания основных тенденций развития экономики и общественной жизни, позволяет ориентироваться в современных цифровых и компьютерных технологиях, уверенно использовать их для дальнейшего образования и в повседневной жизни. В тоже время овладение абстрактными и логически строгими конструкциями алгебры и математического анализа развивает умение находить закономерности, обосновывать истинность, доказывать утверждения с помощью индукции и рассуждать дедуктивно, использовать обобщение и конкретизацию, абстрагирование и аналогию, формирует креативное и критическое мышление.

В ходе изучения курса «Алгебра и начала математического анализа» учащиеся получают новый опыт решения прикладных задач, самостоятельного построения математических моделей реальных ситуаций, интерпретации полученных решений, знакомятся с примерами математических закономерностей в природе, науке и искусстве, с выдающимися математическими открытиями и их авторами.

Курс обладает значительным воспитательным потенциалом, который реализуется

как через учебный материал, способствующий формированию научного мировоззрения, так и через специфику учебной деятельности, требующей продолжительной концентрации внимания, самостоятельности, аккуратности и ответственности за полученный результат.

В основе методики обучения алгебре и началам математического анализа лежит деятельностный принцип обучения.

В структуре курса «Алгебра и начала математического анализа» можно выделить следующие содержательно-методические линии: «Степень срациональным показателем», «Логарифмическая функция», «Тригонометрические функции», «Начала математического анализа», «Системы уравнений». Все основные содержательно-методические линии изучаются на протяжении двух лет обучения в старшей школе, естественно дополняя друг друга и постепенно насыщаясь новыми темами и разделами. Можно с уверенностью сказать, что данный курс является интегративным, поскольку объединяет в себе содержание нескольких математических дисциплин, таких как алгебра, тригонометрия, математический анализ, теория множеств, математическая логика и др. По мере того как учащиеся овладевают всё более широким математическим аппаратом, у них последовательно формируется и совершенствуется умение строить математическую модель реальной ситуации, применять знания, полученные при изучении курса, для решения самостоятельно сформулированной математической задачи, затем a интерпретировать свой ответ.

Согласно учебному плану в 10-11 классах изучается учебный курс «Алгебра и начала математического анализа», который включает в себя следующие основные разделы содержания: «Числа и вычисления», «Уравнения и неравенства», «Функции и графики», «Начала математического анализа».

В учебном плане на изучение курса алгебры и начал математического анализа **на базовом уровне** в 10 классе отводится 2 учебных часа в неделю, всего — 68 часов, в 11 классе 3 учебных часа в неделю, всего—102 учебных часов.

На изучение **углублённого курса** алгебры и начал математического анализа в 10 классе отводится 4 учебных часа в неделю в течение каждого года обучения, всего — 136 учебных часов.

ПЛАНИРУЕМЫЕ ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ СИНХРОНИЗИРОВАННОЙ ПРОГРАММЫ ЗА КУРС 10-11 КЛАССОВ

Освоение учебного курса «Алгебра и начала математического анализа» на уровне среднего общего образования должно обеспечивать достижение следующих предметных образовательных результатов:

Базовый уровень 10 класс

Числа и вычисления

Оперировать понятиями: рациональное и действительное число, обыкновенная и десятичная дробь, проценты.

Выполнять арифметические операции с рациональными и действительными числами.

Выполнять приближённые вычисления, используя правила округления, делать прикидку и оценку результата вычислений.

Оперировать понятиями: степень с целым показателем; стандартная форма записи действительного числа, корень натуральной степени; использовать подходящую форму записи действительных чисел для решения практических задач и представления данных.

Оперировать понятиями: синус, косинус и тангенс произвольного угла; использовать запись произвольного угла через обратные тригонометрические функции.

Уравнения и неравенства

Оперировать понятиями: тождество, уравнение, неравенство; целое, рациональное, иррациональное уравнение, неравенство; тригонометрическое уравнение;

Выполнять преобразования тригонометрических выражений и решать

тригонометрические уравнения.

Выполнять преобразования целых, рациональных и иррациональных выражений и решать основные типы целых, рациональных и иррациональных уравнений и неравенств.

Применять уравнения и неравенства для решения математических задач и задач из различных областей науки и реальной жизни.

Моделировать реальные ситуации на языке алгебры, составлять выражения, уравнения, неравенства по условию задачи, исследовать построенные модели с использованием аппарата алгебры.

Функции и графики

Оперировать понятиями: функция, способы задания функции, область определения и множество значений функции, график функции, взаимно обратные функции.

Оперировать понятиями: чётность и нечётность функции, нули функции, промежутки знакопостоянства.

Использовать графики функций для решения уравнений.

Строить и читать графики линейной функции, квадратичной функции, степенной функции с целым показателем.

Использовать графики функций для исследования процессов и зависимостей при решении задач из других учебных предметов и реальной жизни; выражать формулами зависимости между величинами.

Начала математического анализа

Оперировать понятиями: последовательность, арифметическая и геометрическая прогрессии.

Оперировать понятиями: бесконечно убывающая геометрическая прогрессия, сумма бесконечно убывающей геометрической прогрессии.

Задавать последовательности различными способами.

Использовать свойства последовательностей и прогрессий для решения реальных задач прикладного характера.

Множества и логика

Оперировать понятиями: множество, операции над множествами.

Использовать теоретико-множественный аппарат для описания реальных процессов и явлений, при решении задач из других учебных предметов.

Оперировать понятиями: определение, теорема, следствие, доказательство.

Углубленный уровень 10 класс

Числа и вычисления:

свободно оперировать понятиями: рациональное число, бесконечная периодическая дробь, проценты, иррациональное число, множества рациональных и действительных чисел, модуль действительного числа;

применять дроби и проценты для решения прикладных задач из различных отраслей знаний и реальной жизни;

применять приближённые вычисления, правила округления, прикидку и оценку результата вычислений;

свободно оперировать понятием: степень с целым показателем, использовать подходящую форму записи действительных чисел для решения практических задач и представления данных;

свободно оперировать понятием: арифметический корень натуральной степени;

свободно оперировать понятием: степень с рациональным показателем;

свободно оперировать понятиями: логарифм числа, десятичные и натуральные логарифмы;

свободно оперировать понятиями: синус, косинус, тангенс, котангенс числового аргумента;

оперировать понятиями: арксинус, арккосинус и арктангенс числового аргумента.

Уравнения и неравенства:

свободно оперировать понятиями: тождество, уравнение, неравенство, равносильные уравнения и уравнения-следствия, равносильные неравенства;

применять различные методы решения рациональных и дробно-рациональных уравнений, применять метод интервалов для решения неравенств;

свободно оперировать понятиями: многочлен от одной переменной, многочлен с целыми коэффициентами, корни многочлена, применять деление многочлена на многочлен с остатком, теорему Безу и теорему Виета для решения задач;

свободно оперировать понятиями: система линейных уравнений, матрица, определитель матрицы 2×2 и его геометрический смысл, использовать свойства определителя 2×2 для вычисления его значения, применять определители для решения системы линейных уравнений, моделировать реальные ситуации с помощью системы линейных уравнений, исследовать построенные модели с помощью матриц и определителей, интерпретировать полученный результат;

использовать свойства действий с корнями для преобразования выражений;

выполнять преобразования числовых выражений, содержащих степени с рациональным показателем;

использовать свойства логарифмов для преобразования логарифмических выражений;

свободно оперировать понятиями: иррациональные, показательные и логарифмические уравнения, находить их решения с помощью равносильных переходов или осуществляя проверку корней;

применять основные тригонометрические формулы для преобразования тригонометрических выражений;

свободно оперировать понятием: тригонометрическое уравнение, применять необходимые формулы для решения основных типов тригонометрических уравнений;

моделировать реальные ситуации на языке алгебры, составлять выражения, уравнения, неравенства по условию задачи, исследовать построенные модели с использованием аппарата алгебры.

Функции и графики:

свободно оперировать понятиями: функция, способы задания функции, взаимно обратные функции, композиция функций, график функции, выполнять элементарные преобразования графиков функций;

свободно оперировать понятиями: область определения и множество значений функции, нули функции, промежутки знакопостоянства;

свободно оперировать понятиями: чётные и нечётные функции, периодические функции, промежутки монотонности функции, максимумы и минимумы функции, наибольшее и наименьшее значение функции на промежутке;

свободно оперировать понятиями: степенная функция с натуральным и целым показателем, график степенной функции с натуральным и целым показателем, график корня n-ой степени как функции обратной степени с натуральным показателем;

оперировать понятиями: линейная, квадратичная и дробно-линейная функции, выполнять элементарное исследование и построение их графиков;

свободно оперировать понятиями: показательная и логарифмическая функции, их свойства и графики, использовать их графики для решения уравнений;

свободно оперировать понятиями: тригонометрическая окружность, определение тригонометрических функций числового аргумента;

использовать графики функций для исследования процессов и зависимостей при решении задач из других учебных предметов и реальной жизни, выражать формулами зависимости между величинами;

Начала математического анализа:

свободно оперировать понятиями: арифметическая и геометрическая прогрессия, бесконечно убывающая геометрическая прогрессия, линейный и экспоненциальный рост, формула сложных процентов, иметь представление о константе;

использовать прогрессии для решения реальных задач прикладного характера;

свободно оперировать понятиями: последовательность, способы задания последовательностей, монотонные и ограниченные последовательности, понимать основы зарождения математического анализа как анализа бесконечно малых;

свободно оперировать понятиями: непрерывные функции, точки разрыва графика функции, асимптоты графика функции;

свободно оперировать понятием: функция, непрерывная на отрезке, применять свойства непрерывных функций для решения задач;

свободно оперировать понятиями: первая и вторая производные функции, касательная к графику функции;

вычислять производные суммы, произведения, частного и композиции двух функций, знать производные элементарных функций;

использовать геометрический и физический смысл производной для решения задач.

Множества и логика:

свободно оперировать понятиями: множество, операции над множествами;

использовать теоретико-множественный аппарат для описания реальных процессов и явлений, при решении задач из других учебных предметов;

свободно оперировать понятиями: определение, теорема, уравнение-следствие, свойство математического объекта, доказательство, равносильные уравнения и неравенства.

Базовый уровень 11 класс

Числа и вычисления

- Оперировать понятиями: натуральное, целое число; использовать признаки делимости целых чисел, разложение числа на простые множители для решения задач.
- Оперировать понятием: степень с рациональным показателем.
- Оперировать понятиями: логарифм числа, десятичные и натуральные логарифмы. Уравнения и неравенства
- Применять свойства степени для преобразования выражений; оперировать понятиями: показательное уравнение и неравенство; решать основные типы показательных уравнений и неравенств.
- Выполнять преобразования выражений, содержащих логарифмы; оперировать понятиями: логарифмическое уравнение и неравенство; решать основные типы логарифмических уравнений и неравенств.
- Находить решения простейших тригонометрических неравенств.
- Оперировать понятиями: система линейных уравнений и её решение; использовать систему линейных уравнений для решения практических задач.
- Находить решения простейших систем и совокупностей рациональных уравнений и неравенств.
- Моделировать реальные ситуации на языке алгебры, составлять выражения, уравнения, неравенства и системы по условию задачи, исследовать построенные модели с использованием аппарата алгебры.

Функции и графики

- Оперировать понятиями: периодическая функция, промежутки монотонности функции, точки экстремума функции, наибольшее и наименьшее значения функции на промежутке; использовать их для исследования функции, заданной графиком.
- Оперировать понятиями: графики показательной, логарифмической и тригонометрических функций; изображать их на координатной плоскости и использовать для решения уравнений и неравенств.
- Изображать на координатной плоскости графики линейных уравнений и использовать их для решения системы линейных уравнений.
- Использовать графики функций для исследования процессов и зависимостей из других учебных дисциплин.

Начала математического анализа

- Оперировать понятиями: непрерывная функция; производная функции; использовать геометрический и физический смысл производной для решения задач.
- Находить производные элементарных функций, вычислять производные суммы, произведения, частного функций.
- Использовать производную для исследования функции на монотонность и экстремумы, применять результаты исследования к построению графиков.
- Использовать производную для нахождения наилучшего решения в прикладных, в том числе социально-экономических, задачах.
- Оперировать понятиями: первообразная и интеграл; понимать геометрический и физический смысл интеграла.
- Находить первообразные элементарных функций; вычислять интеграл по формуле Ньютона—Лейбница.
- Решать прикладные задачи, в том числе социально-экономического и физического характера, средствами математического анализа.

Углубленный уровень 11 класс

Числа и вычисления

- Свободно оперировать понятиями: натуральное и целое число, множества натуральных и целых чисел; использовать признаки делимости целых чисел, НОД и НОК натуральных чисел для решения задач, применять алгоритм Евклида.
- Свободно оперировать понятием остатка по модулю; записывать натуральные числа в различных позиционных системах счисления.
- Свободно оперировать понятиями: комплексное число и множество комплексных чисел; представлять комплексные числа в алгебраической и тригонометрической форме, выполнять арифметические операции с ними и изображать на координатной плоскости.

Уравнения и неравенства

- Свободно оперировать понятиями: иррациональные, показательные и логарифмические неравенства; находить их решения с помощью равносильных переходов.
- Осуществлять отбор корней при решении тригонометрического уравнения.
- Свободно оперировать понятием тригонометрическое неравенство; применять необходимые формулы для решения основных типов тригонометрических неравенств.
- Свободно оперировать понятиями: система и совокупность уравнений и неравенств; равносильные системы и системы- следствия; находить решения системы и совокупностей рациональных, иррациональных, показательных и логарифмических уравнений и неравенств.
- Решать рациональные, иррациональные, показательные, логарифмические и тригонометрические уравнения и неравенства, содержащие модули и параметры.
- Применять графические методы для решения уравнений и неравенств, а также задач с параметрами.
- Моделировать реальные ситуации на языке алгебры, составлять выражения,

уравнения, неравенства и их системы по условию задачи, исследовать построенные модели с использованием аппарата алгебры, интерпретировать полученный результат.

Функции и графики

- Строить графики композиции функций с помощью элементарного исследования и свойств композиции двух функций.
- Строить геометрические образы уравнений и неравенств на координатной плоскости.
- Свободно оперировать понятиями: графики тригонометрических функций.
- Применять функции для моделирования и исследования реальных процессов.
 Начала математического анализа
- Использовать производную для исследования функции на монотонность и экстремумы.
- Находить наибольшее и наименьшее значения функции непрерывной на отрезке.
- Использовать производную для нахождения наилучшего решения в прикладных, в том числе социально-экономических, задачах, для определения скорости и ускорения процесса, заданного формулой или графиком.
- Свободно оперировать понятиями: первообразная, определённый интеграл; находить первообразные элементарных функций и вычислять интеграл по формуле Ньютона Лейбница.
- Находить площади плоских фигур и объёмы тел с помощью интеграла.
- Иметь представление о математическом моделировании на примере составления дифференциальных уравнений.
- Решать прикладные задачи, в том числе социально-экономического и физического характера, средствами математического анализа.

СОДЕРЖАНИЕ УЧЕБНОГО КУРСА «АЛГЕБРА И НАЧАЛА МАТЕМАТИЧЕСКОГЬ АНАЛИЗА» 10 КЛАСС

Базовый уровень

Числа и вычисления

Рациональные числа. Обыкновенные и десятичные дроби, проценты, бесконечные периодические дроби. Арифметические операции с рациональными числами, преобразования числовых выражений. Применение дробей и процентов для решения прикладных задач из различных отраслей знаний и реальной жизни.

Действительные числа. Рациональные и иррациональные числа. Арифметические операции с действительными числами. Приближённые вычисления, правила округления, прикидка и оценка результата вычислений.

Степень с целым показателем. Стандартная форма записи действительного числа. Использование подходящей формы записи действительных чисел для решения практических задач и представления данных.

Арифметический корень натуральной степени. Действия с арифметическими корнями натуральной степени.

Синус, косинус и тангенс числового аргумента. Арксинус, арккосинус, арктангенс числового аргумента.

Уравнения и неравенства

Тождества и тождественные преобразования.

Преобразование тригонометрических выражений. Основные тригонометрические формулы.

Уравнение, корень уравнения. Неравенство, решение неравенства. Метод интервалов.

Решение целых и дробно-рациональных уравнений и неравенств.

Решение иррациональных уравнений и неравенств.

Решение тригонометрических уравнений.

Применение уравнений и неравенств к решению математических задач и задач из различных областей науки и реальной жизни.

Функции и графики

Функция, способы задания функции. График функции. Взаимно обратные функции.

Область определения и множество значений функции. Нули функции. Промежутки знакопостоянства. Чётные и нечётные функции.

Степенная функция с натуральным и целым показателем. Её свойства и график. Свойства и график корня *n*-ой степени.

Тригонометрическая окружность, определение тригонометрических функций числового аргумента.

Начала математического анализа

Последовательности, способы задания последовательностей. Монотонные последовательности.

Арифметическая и геометрическая прогрессии. Бесконечно убывающая геометрическая прогрессия. Сумма бесконечно убывающей геометрической прогрессии. Формула сложных процентов. Использование прогрессии для решения реальных задач прикладного характера.

Множества и логика

Множество, операции над множествами. Диаграммы Эйлера—Венна. Применение теоретико-множественного аппарата для описания реальных процессов и явлений, при решении задач из других учебных предметов.

Определение, теорема, следствие, доказательство.

Углубленный уровень

Числа и вычисления

Рациональные числа. Обыкновенные и десятичные дроби, проценты, бесконечные периодические дроби. Применение дробей и процентов для решения прикладных задач из различных отраслей знаний и реальной жизни.

Действительные числа. Рациональные и иррациональные числа. Арифметические операции с действительными числами. Модуль действительного числа и его свойства. Приближённые вычисления, правила округления, прикидка и оценка результата вычислений.

Степень с целым показателем. Бином Ньютона. Использование подходящей формы записи действительных чисел для решения практических задач и представления данных.

Арифметический корень натуральной степени и его свойства.

Степень с рациональным показателем и её свойства, степень с действительным показателем.

Логарифм числа. Свойства логарифма. Десятичные и натуральные логарифмы.

Синус, косинус, тангенс, котангенс числового аргумента. Арксинус, арккосинус и арктангенс числового аргумента.

Уравнения и неравенства

Тождества и тождественные преобразования. Уравнение, корень уравнения. Равносильные уравнения и уравнения-следствия. Неравенство, решение неравенства.

Основные методы решения целых и дробно-рациональных уравнений и неравенств. Многочлены от одной переменной. Деление многочлена на многочлен с остатком. Теорема Безу. Многочлены с целыми коэффициентами. Теорема Виета.

Преобразования числовых выражений, содержащих степени и корни.

Иррациональные уравнения. Основные методы решения иррациональных уравнений.

Показательные уравнения. Основные методы решения показательных уравнений.

Преобразование выражений, содержащих логарифмы.

Логарифмические уравнения. Основные методы решения логарифмических уравнений.

Основные тригонометрические формулы. Преобразование тригонометрических выражений. Решение тригонометрических уравнений.

Решение систем линейных уравнений. Матрица системы линейных уравнений. Определитель матрицы 2×2, его геометрический смысл и свойства, вычисление его значения, применение определителя для решения системы линейных уравнений. Решение прикладных задач с помощью системы линейных уравнений. Исследование построенной модели с помощью матриц и определителей.

Построение математических моделей реальной ситуации с помощью уравнений и неравенств. Применение уравнений и неравенств к решению математических задач и задач из различных областей науки и реальной жизни.

Функции и графики

Функция, способы задания функции. Взаимно обратные функции. Композиция функций. График функции. Элементарные преобразования графиков функций.

Область определения и множество значений функции. Нули функции. Промежутки знакопостоянства. Чётные и нечётные функции. Периодические функции. Промежутки монотонности функции. Максимумы и минимумы функции. Наибольшее и наименьшее значения функции на промежутке.

Линейная, квадратичная и дробно-линейная функции. Элементарное исследование и построение их графиков.

Степенная функция с натуральным и целым показателем. Её свойства и график. Свойства и график корня n-ой степени как функции обратной степени с натуральным показателем.

Показательная и логарифмическая функции, их свойства и графики. Использование графиков функций для решения уравнений.

Тригонометрическая окружность, определение тригонометрических функций числового аргумента.

Функциональные зависимости в реальных процессах и явлениях. Графики реальных зависимостей.

Начала математического анализа

Последовательности, способы задания последовательностей. Метод математической индукции. Монотонные и ограниченные последовательности. История возникновения математического анализа как анализа бесконечно малых.

Арифметическая и геометрическая прогрессии. Бесконечно убывающая геометрическая прогрессия. Сумма бесконечно убывающей геометрической прогрессии. Линейный и экспоненциальный рост. Число е. Формула сложных процентов. Использование прогрессии для решения реальных задач прикладного характера.

Непрерывные функции и их свойства. Точки разрыва. Асимптоты графиков функций. Свойства функций непрерывных на отрезке. Метод интервалов для решения неравенств. Применение свойств непрерывных функций для решения задач.

Первая и вторая производные функции. Определение, геометрический и физический смысл производной. Уравнение касательной к графику функции.

Производные элементарных функций. Производная суммы, произведения, частного

и композиции функций.

Множества и логика

Множество, операции над множествами и их свойства. Диаграммы Эйлера—Венна. Применение теоретико-множественного аппарата для описания реальных процессов и явлений, при решении задач из других учебных предметов.

Определение, теорема, свойство математического объекта, следствие, доказательство, равносильные уравнения.

СОДЕРЖАНИЕ УЧЕБНОГО КУРСА «АЛГЕБРА И НАЧАЛА МАТЕМАТИЧЕСКОГЬ АНАЛИЗА» 11 КЛАСС

Базовый уровень

Числа и вычисления.

Натуральные и целые числа. Признаки делимости целых чисел.

Степень с рациональным показателем. Свойства степени.

Логарифм числа. Десятичные и натуральные логарифмы.

Уравнения и неравенства.

Преобразование выражений, содержащих логарифмы.

Преобразование выражений, содержащих степени с рациональным показателем.

Примеры тригонометрических неравенств.

Показательные уравнения и неравенства.

Логарифмические уравнения и неравенства.

Системы линейных уравнений. Решение прикладных задач с помощью системы линейных уравнений.

Системы и совокупности рациональных уравнений и неравенств.

Применение уравнений, систем и неравенств к решению математических задач и задач из различных областей науки и реальной жизни.

Функции и графики.

Функция. Периодические функции. Промежутки монотонности функции. Максимумы и минимумы функции. Наибольшее и наименьшее значение функции на промежутке.

Тригонометрические функции, их свойства и графики.

Показательная и логарифмическая функции, их свойства и графики.

Использование графиков функций для решения уравнений и линейных систем.

Использование графиков функций для исследования процессов и зависимостей, которые возникают при решении задач из других учебных предметов и реальной жизни.

Начала математического анализа.

Непрерывные функции. Метод интервалов для решения неравенств.

Производная функции. Геометрический и физический смысл производной.

Производные элементарных функций. Формулы нахождения производной суммы, произведения и частного функций.

Применение производной к исследованию функций на монотонность и экстремумы. Нахождение наибольшего и наименьшего значения функции на отрезке.

Применение производной для нахождения наилучшего решения в прикладных задачах, для определения скорости процесса, заданного формулой или графиком.

Первообразная. Таблица первообразных.

Интеграл, его геометрический и физический смысл. Вычисление интеграла по формуле Ньютона–Лейбница.

Углубленный уровень

Числа и вычисления.

Натуральные и целые числа. Применение признаков делимости целых чисел, наибольший общий делитель (далее – НОД) и наименьшее общее кратное (далее - НОК),

остатков по модулю, алгоритма Евклида для решения задач в целых числах.

Комплексные числа. Алгебраическая и тригонометрическая формы записи комплексного числа. Арифметические операции с комплексными числами. Изображение комплексных чисел на координатной плоскости. Формула Муавра. Корни п-ой степени из комплексного числа. Применение комплексных чисел для решения физических и геометрических задач.

Уравнения и неравенства.

Система и совокупность уравнений и неравенств. Равносильные системы и системы-следствия. Равносильные неравенства.

Отбор корней тригонометрических уравнений с помощью тригонометрической окружности. Решение тригонометрических неравенств.

Основные методы решения показательных и логарифмических неравенств.

Основные методы решения иррациональных неравенств.

Основные методы решения систем и совокупностей рациональных, иррациональных, показательных и логарифмических уравнений.

Уравнения, неравенства и системы с параметрами.

Применение уравнений, систем и неравенств к решению математических задач и задач из различных областей науки и реальной жизни, интерпретация полученных результатов.

Функции и графики.

График композиции функций. Геометрические образы уравнений и неравенств на координатной плоскости.

Тригонометрические функции, их свойства и графики.

Графические методы решения уравнений и неравенств. Графические методы решения задач с параметрами.

Использование графиков функций для исследования процессов и зависимостей, которые возникают при решении задач из других учебных предметов и реальной жизни.

Начала математического анализа.

Применение производной к исследованию функций на монотонность и экстремумы. Нахождение наибольшего и наименьшего значений непрерывной функции на отрезке.

Применение производной для нахождения наилучшего решения в прикладных задачах, для определения скорости и ускорения процесса, заданного формулой или графиком.

Первообразная, основное свойство первообразных. Первообразные элементарных функций. Правила нахождения первообразных.

Интеграл. Геометрический смысл интеграла. Вычисление определённого интеграла по формуле Ньютона–Лейбница.

Применение интеграла для нахождения площадей плоских фигур и объёмов геометрических тел.

Примеры решений дифференциальных уравнений. Математическое моделирование реальных процессов с помощью дифференциальных уравнений.

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ УЧЕБНОГО КУРСА 10 КЛАСС

Базовый уровень		Углубленный уровень		
Название раздела (темы)	Количество часов	Название раздела(темы)	Количество часов	
Множества рациональных и действительных	14	Множество действительных чисел.	24	
чисел. Рациональные уравнения и неравенства		Многочлены. Рациональные уравнения и		
		неравенства. Системы линейных уравнений		
Функции и графики. Степень с целым	6	Функции и графики. Степенная функция с	12	
показателем		целым показателем		
Арифметический корень п-ой степени.	18	Арифметический корень п-ой степени.	15	
Иррациональные уравнения и неравенства		Иррациональные уравнения		
		Показательная функция. Показательные	10	
		уравнения		
		Логарифмическая функция. Логарифмические	18	
		уравнения		
Формулы тригонометрии. Тригонометрические	22	Тригонометрические выражения и уравнения	22	
уравнения	22			
Последовательности и прогрессии	5	Последовательности и прогрессии	10	
		Непрерывные функции. Производная	20	
Пожата от	2	Повторение, обобщение, систематизация	5	
Повторение, обобщение, систематизация знаний	3	знаний		
ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО	68	ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО	136	
ПРОГРАММЕ	08	ПРОГРАММЕ		

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ УЧЕБНОГО КУРСА 11 КЛАСС

Базов	вый уровень (102 часов)	Углубленный уровень (136 часов)		
Название раздела (темы)	Основное содержание раздела (темы)	Название раздела (темы)	Основное содержание раздела (темы)	
(число часов)	-	(число часов)		
Степень с	Степень с рациональным показателем.			
рациональным	Свойства степени.			
показателем.	Преобразование выражений, содержащих			
Показательная функция.	рациональные степени. Показательные			
Показательные	уравнения и неравенства.			
уравнения и неравенства	Показательная функция, её свойства и			
(12ч)	график			
Логарифмическая	Логарифм числа. Десятичные и натуральные	Иррациональные,	Основные методы решения показательных и	
функция.	логарифмы.	показательные и	логарифмических неравенств.	
Логарифмические	Преобразование выражений, содержащих	логарифмические	Основные методы решения иррациональных	
уравнения и неравенства	логарифмы.	неравенства (24 ч.)	неравенств.	
(12 ч.)	Логарифмические уравнения и неравенства.		Графические методы решения иррациональных,	
	Логарифмическая функция, её свойства и		показательных и логарифмических уравнений и	
	график		неравенств	
Тригонометрические	Тригонометрические функции, их свойства и	Графики	Тригонометрические функции, их свойства и	
функции и их графики.	графики.	тригонометрических	графики.	
Тригонометрические	Примеры тригонометрических неравенств	функций.	Отбор корней тригонометрических уравнений с	
неравенства (9ч.)		Тригонометрические	помощью тригонометрической окружности.	
		неравенства (16 ч.)	Решение тригонометрических неравенств	
		Комплексные числа (10	Комплексные числа. Алгебраическая и	
		ч.)	тригонометрическая формы записи	
			комплексного числа.	
			Арифметические операции с комплексными	
			числами.	
			Изображение комплексных чисел на	
			координатной плоскости. Формула Муавра.	
			Корни п-ой степени из комплексного числа.	
			Применение комплексных чисел для решения	
			физических и геометрических задач	

Производная. Применение производной (24 ч.)	Непрерывные функции. Метод интервалов для решения неравенств. Производная функции. Геометрический и физический смысл производной. Производные элементарных функций. Производная суммы, произведения, частного функций. Применение производной к исследованию функций на монотонность и экстремумы. Нахождение наибольшего и наименьшего значения функции на отрезке. Применение производной для нахождения наилучшего решения в прикладных задачах, для определения скорости процесса, заданного формулой или графиком	Исследование функций с помощью производной (24 ч.)	Применение производной к исследованию функций на монотонность и экстремумы. Нахождение наибольшего и наименьшего значения непрерывной функции на отрезке. Применение производной для нахождения наилучшего решения в прикладных задачах, для определения скорости и ускорения процесса, заданного формулой или графиком Композиция функций. Геометрические образы уравнений и неравенств на координатной плоскости.
Интеграл и его применения (9 ч.)	Первообразная. Таблица первообразных. Интеграл, геометрический и физический смысл интеграла. Вычисление интеграла по формуле Ньютона—Лейбница	Первообразная и интеграл (12 ч.)	Первообразная, основное свойство первообразных. Первообразные элементарных функций. Правила нахождения первообразных. Интеграл. Геометрический смысл интеграла. Вычисление определённого интеграла по формуле Ньютона — Лейбница. Применение интеграла для нахождения площадей плоских фигур и объёмов геометрических тел. Примеры решений дифференциальных уравнений. Математическое моделирование реальных процессов с помощью дифференциальных уравнений
Системы уравнений (12 ч.)	Системы линейных уравнений. Решение прикладных задач с помощью системы линейных уравнений. Системы и совокупности целых, рациональных, иррациональных, показательных, логарифмических уравнений и неравенств. Использование графиков функций для решения уравнений и систем. Применение уравнений, систем и неравенств к решению математических задач и задач из	Системы рациональных, иррациональных показательных и логарифмических уравнений (12 ч.)	Система и совокупность уравнений. Равносильные системы и системы-следствия. Основные методы решения систем и совокупностей рациональных, иррациональных, показательных и логарифмических уравнений. Применение уравнений, систем и неравенств к решению математических задач и задач из различных областей науки и реальной жизни, интерпретация полученных результатов

	различных областей науки и реальной жизни		
Натуральные и целые	Натуральные и целые числа в зада- чах из	Натуральные и целые	Натуральные и целые числа. Применение
числа (6 ч.)	реальной жизни.	числа (10 ч.)	признаков делимости целых чисел, НОД и НОК,
	Признаки делимости целых чисел		остатков по модулю, алгоритма Евклида для
			решения задач в целых числах
		Задачи с параметрами (16	Рациональные, иррациональные, показательные,
		ч.)	логарифмические и тригонометрические
			уравнения, неравенства и системы с
			параметрами.
			Построение и исследование математических
			моделей реальных ситуаций с помощью
			уравнений, систем уравнений и неравенств с
			параметрами
Повторение, обобщение,	Основные понятия курса алгебры и начал	Повторение, обобщение,	Основные понятия и методы курса, обобщение и
систематизация знаний	математического анализа, обобщение и	систематизация знаний	систематизация знаний
(18 ч.)	систематизация знаний	(12ч.)	

СИНХРОНИЗИРОВАННАЯ РАБОЧАЯ ПРОГРАММА УЧЕБНОГО КУРСА «ГЕОМЕТРИЯ» 10-11 КЛАССЫ

ЦЕЛИ ИЗУЧЕНИЯ УЧЕБНОГО КУРСА

Геометрия является одним из базовых курсов на уровне среднего общего образования, так как обеспечивает возможность изучения дисциплин естественно-научной направленности и предметов гуманитарного цикла. Логическое мышление, формируемое при изучении обучающимися понятийных основ геометрии, при доказательстве теорем и построении цепочки логических утверждений при решении геометрических задач, умение выдвигать и опровергать гипотезы непосредственно используются при решении задач естественно-научного цикла, в частности физических задач.

Цель освоения программы учебного курса «Геометрия» на базовом уровне обучения — общеобразовательное и общекультурное развитие обучающихся через обеспечение возможности приобретения и использования систематических геометрических знаний и действий, специфичных геометрии, возможности успешного продолжения образования по специальностям, не связанным с прикладным использованием геометрии. Цель освоения программы учебного курса «Геометрия» на углублённом уровне — развитие индивидуальных способностей обучающихся при изучении геометрии, как составляющей предметной области «Математика и информатика» через обеспечение возможности приобретения и использования более глубоких геометрических знаний и действий, специфичных геометрии, и необходимых для успешного профессионального образования, связанного с использованием математики.

Достижение цели освоения программы обеспечивается решением соответствующих задач. Приоритетными задачами освоения курса «Геометрии» на базовом уровне в 10—11 классах являются:

- формирование представления о геометрии как части мировой культуры и осознание её взаимосвязи с окружающим миром;
- формирование представления о многогранниках и телах вращения как о важнейших математических моделях, позволяющих описывать и изучать разные явления окружающего мира;
- формирование умения распознавать на чертежах, моделях и в реальном мире многогранники и тела вращения;
- овладение методами решения задач на построения на изображениях пространственных фигур;
- формирование умения оперировать основными понятиями о многогранниках и телах вращения и их основными свойствами;
- овладение алгоритмами решения основных типов задач; формирование умения проводить несложные доказательные рассуждения в ходе решения стереометрических задач и задач с практическим содержанием;
- развитие интеллектуальных и творческих способностей обучающихся, познавательной активности, исследовательских умений, критичности мышления;
- формирование функциональной грамотности, релевантной геометрии: умение распознавать проявления геометрических понятий, объектов и закономерностей в реальных жизненных ситуациях и при изучении других учебных предметов, проявления зависимостей и закономерностей, формулировать их на языке геометрии и создавать геометрические модели, применять освоенный геометрический аппарат для решения практико-ориентированных задач, интерпретировать и оценивать полученные результаты.

Приоритетными задачами курса геометрии **на углублённом уровне**, расширяющими и усиливающими курс базового уровня, являются:

- расширение представления о геометрии как части мировой культуры и формирование осознания взаимосвязи геометрии с окружающим миром;
- формирование представления о пространственных фигурах как о важнейших математических моделях, позволяющих описывать и изучать разные явления окружающего мира; знание понятийного аппарата по разделу «Стереометрия» школьного

- курса геометрии;
- формирование умения владеть основными понятиями о пространственных фигурах и их основными свойствами; знание теорем, формул и умение их применять; умения доказывать теоремы и находить нестандартные способы решения задач;
- формирование умения распознавать на чертежах, моделях и в реальном мире многогранники и тела вращения; конструировать геометрические модели;
- формирование понимания возможности аксиоматического построения математических теорий; формирование понимания роли аксиоматики при проведении рассуждений;
- формирование умения владеть методами доказательств и алгоритмов решения; умения их применять, проводить доказательные рассуждения в ходе решения стереометрических задач и задач с практическим содержанием; формирование представления о необходимости доказательств при обосновании математических утверждений и роли аксиоматики в проведении дедуктивных рассуждений;
- развитие и совершенствование интеллектуальных и творческих способностей обучающихся, познавательной активности, исследовательских умений, критичности мышления, интереса к изучению геометрии;
- формирование функциональной грамотности, релевантной геометрии: умения распознавать проявления геометрических понятий, объектов и закономерностей в реальных жизненных ситуациях и при изучении других учебных предметов, проявления зависимостей и закономерностей, моделирования реальных ситуаций, исследования построенных моделей, интерпретации полученных результатов.

Основные содержательные линии курса «Геометрии» в 10—11 классах: «Многогранники», «Прямые и плоскости в пространстве», «Тела вращения», «Векторы и координаты в пространстве» «Движения в пространстве» (на углубленном уровне). Формирование логических умений распределяется не только по содержательным линиям, но и по годам обучения на уровне среднего общего образования.

МЕСТО УЧЕБНОГО КУРСА В УЧЕБНОМ ПЛАНЕ

В учебном плане на изучение геометрии **на базовом уровне** в 10 классе отводится 2 учебных часа в неделю, всего за год обучения 68 часов, в 11 классе — 1 час в неделю, всего 34 часа; **на углубленном уровне** 3 учебных часа в неделю, всего за каждый год обучения - 102 учебных часа.

ПЛАНИРУЕМЫЕ ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ СИНХРОНИЗИРОВАННОЙ ПРОГРАММЫ КУРСА «ГЕОМЕТРИЯ»

Предметные результаты изучения геометрии на базовом уровне ориентированы на достижение уровня математической грамотности, необходимого для успешного решения задач в реальной жизни и создание условий для их общекультурного развития.

Освоение учебного курса «Геометрия» на базовом уровне среднего общего образования должно обеспечивать достижение следующих предметных образовательных результатов:

На базовом уровне 10 класс

Оперировать понятиями: точка, прямая, плоскость.

Применять аксиомы стереометрии и следствия из них при решении геометрических задач.

Оперировать понятиями: параллельность и перпендикулярность прямых и плоскостей.

Классифицировать взаимное расположение прямых и плоскостей в пространстве.

Оперировать понятиями: двугранный угол, грани двугранного угла, ребро двугранного угла; линейный угол двугранного угла; градусная мера двугранного угла.

Оперировать понятиями: многогранник, выпуклый и невыпуклый многогранник, элементы многогранника, правильный многогранник.

Распознавать основные виды многогранников (пирамида; призма, прямоугольный параллелепипед, куб).

Классифицировать многогранники, выбирая основания для классификации (выпуклые и невыпуклые многогранники; правильные многогранники; прямые и наклонные призмы, параллелепипеды).

Оперировать понятиями: секущая плоскость, сечение многогранников.

Объяснять принципы построения сечений, используя метод следов.

Строить сечения многогранников методом следов, выполнять (выносные) плоские чертежи из рисунков простых объёмных фигур: вид сверху, сбоку, снизу.

Решать задачи на нахождение геометрических величин по образцам или алгоритмам, применяя известные аналитические методы при решении стандартных математических задач на вычисление расстояний между двумя точками, от точки до прямой, от точки до плоскости, между скрещивающимися прямыми.

Решать задачи на нахождение геометрических величин по образцам или алгоритмам, применяя известные аналитические методы при решении стандартных математических задач на вычисление углов между скрещивающимися прямыми, между прямой и плоскостью, между плоскостями, двугранных углов.

Вычислять объёмы и площади поверхностей многогранников (призма, пирамида) с применением формул; вычислять соотношения между площадями поверхностей, объёмами подобных многогранников.

Оперировать понятиями: симметрия в пространстве; центр, ось и плоскость симметрии; центр, ось и плоскость симметрии фигуры.

Извлекать, преобразовывать и интерпретировать информацию о пространственных геометрических фигурах, представленную на чертежах и рисунках.

Применять геометрические факты для решения стереометрических задач, предполагающих несколько шагов решения, если условия применения заданы в явной форме.

Применять простейшие программные средства и электронно-коммуникационные системы при решении стереометрических задач.

Приводить примеры математических закономерностей в природе и жизни, распознавать проявление законов геометрии в искусстве.

Применять полученные знания на практике: анализировать реальные ситуации и применять изученные понятия в процессе поиска решения математически сформулированной проблемы, моделировать реальные ситуации на языке геометрии, исследовать построенные модели с использованием геометрических понятий и теорем, аппарата алгебры; решать практические задачи, связанные с нахождением геометрических величин.

На углубленном уровне 10 класс

- свободно оперировать основными понятиями стереометрии при решении задач и проведении математических рассуждений;
- применять аксиомы стереометрии и следствия из них при решении геометрических задач:
- классифицировать взаимное расположение прямых в пространстве, плоскостей в пространстве, прямых и плоскостей в пространстве;
- свободно оперировать понятиями, связанными с углами в пространстве: между прямыми в пространстве, между прямой и плоскостью;
- свободно оперировать понятиями, связанными с многогранниками;
- свободно распознавать основные виды многогранников (призма, пирамида, прямоугольный параллелепипед, куб);
- классифицировать многогранники, выбирая основания для классификации;
- свободно оперировать понятиями, связанными с сечением многогранников плоскостью;

- выполнять параллельное, центральное и ортогональное проектирование фигур на плоскость, выполнять изображения фигур на плоскости;
- строить сечения многогранников различными методами, выполнять (выносные) плоские чертежи из рисунков простых объёмных фигур: вид сверху, сбоку, снизу;
- вычислять площади поверхностей многогранников (призма, пирамида), геометрических тел с применением формул;
- свободно оперировать понятиями: симметрия в пространстве, центр, ось и плоскость симметрии, центр, ось и плоскость симметрии фигуры;
- свободно оперировать понятиями, соответствующими векторам и координатам в пространстве;
- выполнять действия над векторами;
- решать задачи на доказательство математических отношений и нахождение геометрических величин, применяя известные методы при решении математических задач повышенного и высокого уровня сложности;
- применять простейшие программные средства и электронно-коммуникационные системы при решении стереометрических задач;
- извлекать, преобразовывать и интерпретировать информацию о пространственных геометрических фигурах, представленную на чертежах и рисунках;
- применять полученные знания на практике: сравнивать и анализировать реальные ситуации, применять изученные понятия в процессе поиска решения математически сформулированной проблемы, моделировать реальные ситуации на языке геометрии, исследовать построенные модели с использованием геометрических понятий и теорем, аппарата алгебры, решать практические задачи, связанные с нахождением геометрических величин;
- иметь представления об основных этапах развития геометрии как составной части фундамента развития технологий.

На базовом уровне 11 класс

- Оперировать понятиями: точка, прямая, плоскость.
- Применять аксиомы стереометрии и следствия из них при решении геометрических задач.
- Оперировать понятиями: параллельность и перпендикулярность прямых и плоскостей.
- Классифицировать взаимное расположение прямых и плоскостей в пространстве.
- Оперировать понятиями: двугранный угол, грани двугранного угла, ребро двугранного угла; линейный угол двугранного угла; градусная мера двугранного угла.
- Оперировать понятиями: многогранник, выпуклый и невыпуклый многогранник, элементы многогранника, правильный многогранник.
- Распознавать основные виды многогранников (пирамида; призма, прямоугольный параллелепипед, куб).
- Классифицировать многогранники, выбирая основания для классификации (выпуклые и невыпуклые многогранники; правильные многогранники; прямые и наклонные призмы, параллелепипеды).
- Оперировать понятиями: секущая плоскость, сечение многогранников.
- Объяснять принципы построения сечений, используя метод следов.
- Строить сечения многогранников методом следов, выполнять (выносные) плоские чертежи из рисунков простых объёмных фигур: вид сверху, сбоку, снизу.
- Решать задачи на нахождение геометрических величин по образцам или алгоритмам, применяя известные аналитические методы при решении стандартных математических задач на вычисление расстояний между двумя точками, от точки до прямой, от точки до плоскости, между скрещивающимися прямыми.

- Решать задачи на нахождение геометрических величин по образцам или алгоритмам, применяя известные аналитические методы при решении стандартных математических задач на вычисление углов между скрещивающимися прямы- ми, между прямой и плоскостью, между плоскостями, двугранных углов.
- Вычислять объёмы и площади поверхностей многогранников (призма, пирамида) с применением формул; вычислять соотношения между площадями поверхностей, объёмами подобных многогранников.
- Оперировать понятиями: симметрия в пространстве; центр, ось и плоскость симметрии; центр, ось и плоскость симметрии фигуры.
- Извлекать, преобразовывать и интерпретировать информацию о пространственных геометрических фигурах, представленную на чертежах и рисунках.
- Применять геометрические факты для решения стереометрических задач, предполагающих несколько шагов решения, если условия применения заданы в явной форме.
- Применять простейшие программные средства и электронно-коммуникационные системы при решении стереометрических задач.
- Приводить примеры математических закономерностей в природе и жизни, распознавать проявление законов геометрии в искусстве.
- Применять полученные знания на практике: анализировать реальные ситуации и применять изученные понятия в процессе поиска решения математически сформулированной проблемы, моделировать реальные ситуации на языке геометрии, исследовать построенные модели с использованием геометрических понятий и теорем, аппарата алгебры; решать практические задачи, связанные с нахождением геометрических величин.

На углубленном уровне 11 класс

- Свободно оперировать основными понятиями стереометрии при решении задач и проведении математических рассуждений.
- Применять аксиомы стереометрии и следствия из них при решении геометрических задач.
- Классифицировать взаимное расположение прямых в пространстве; плоскостей в пространстве; прямых и плоскостей в пространстве.
- Свободно оперировать понятиями, связанными с углами в пространстве: между прямыми в пространстве; между прямой и плоскостью.
- Свободно оперировать понятиями, связанными с многогранниками.
- Свободно распознавать основные виды многогранников (призма, пирамида, прямоугольный параллелепипед, куб).
- Классифицировать многогранники, выбирая основания для классификации.
- Свободно оперировать понятиями, связанными с сечением многогранников плоскостью.
- Выполнять параллельное, центральное и ортогональное проектирование фигур на плоскость; выполнять изображения фигур на плоскости.
- Строить сечения многогранников различными методами, выполнять (выносные) плоские чертежи из рисунков простых объёмных фигур: вид сверху, сбоку, снизу.
- Вычислять площади поверхностей многогранников (призма, пирамида), геометрических тел с применением формул.
- Свободно оперировать понятиями: симметрия в пространстве; центр, ось и плоскость симметрии; центр, ось и плоскость симметрии фигуры.
- Свободно оперировать понятиями, соответствующими векторам и координатам в пространстве.
- Выполнять действия над векторами.
- Решать задачи на доказательство математических отношений и нахождение

- геометрических величин, применяя известные методы при решении математических задач повышенного и высокого уровня сложности.
- Применять простейшие программные средства и электронно-коммуникационные системы при решении стереометрических задач.
- Извлекать, преобразовывать и интерпретировать информацию о пространственных геометрических фигурах, представленную на чертежах и рисунках.
- Применять полученные знания на практике: сравнивать и анализировать реальные ситуации, применять изученные понятия в процессе поиска решения математически сформулированной проблемы, моделировать реальные ситуации на языке геометрии, исследовать построенные модели с использованием геометрических понятий и теорем, аппарата алгебры; решать практические задачи, связанные с нахождением геометрических величин.
- Иметь представления об основных этапах развития геометрии как составной части фундамента развития технологий.

СОДЕРЖАНИЕ УЧЕБНОГО КУРСА «ГЕОМЕТРИЯ» 10 КЛАССЕ

Прямые и плоскости в пространстве

Основные понятия стереометрии. Точка, прямая, плоскость, пространство. Понятие об аксиоматическом построении стереометрии: аксиомы стереометрии и следствия из них.

Взаимное расположение прямых в пространстве: пересекающиеся, параллельные и скрещивающиеся прямые. Параллельность прямых и плоскостей в пространстве: параллельные прямые в пространстве; параллельность трёх прямых; параллельность прямой и плоскости. Углы с сонаправленными сторонами; угол между прямыми в пространстве. Параллельность плоскостей: параллельные плоскости; свойства параллельных плоскостей. Простейшие пространственные фигуры на плоскости: тетраэдр, куб, параллелепипед; построение сечений.

Перпендикулярность прямой и плоскости: перпендикулярные прямые в пространстве, прямые параллельные и перпендикулярные к плоскости, признак перпендикулярности прямой и плоскости, теорема о прямой перпендикулярной плоскости. Углы в пространстве: угол между прямой и плоскостью; двугранный угол, линейный угол двугранного угла. Перпендикуляр и наклонные: расстояние от точки до плоскости, расстояние от прямой до плоскости, проекция фигуры на плоскость. Перпендикулярность плоскостей: признак перпендикулярности двух плоскостей. Теорема о трёх перпендикулярах.

Многогранники

Понятие многогранника, основные элементы многогранника, выпуклые и невыпуклые многогранники; развёртка многогранника. Призма: *п*-угольная призма; грани и основания призмы; прямая и наклонная призмы; боковая и полная поверхность призмы. Параллелепипед, прямоугольный параллелепипед и его свойства. Пирамида: *п*-угольная пирамида, грани и основание пирамиды; боковая и полная поверхность пирамиды; правильная и усечённая пирамида. Элементы призмы и пирамиды. Правильные многогранники: понятие правильного многогранника; правильная призма и правильная пирамида; правильная треугольная пирамида и правильный тетраэдр; куб. Представление о правильных многогранниках: октаэдр, додекаэдр и икосаэдр. Сечения призмы и пирамиды.

Симметрия в пространстве: симметрия относительно точки, прямой, плоскости. Элементы симметрии в пирамидах, параллелепипедах, правильных многогранниках.

Вычисление элементов многогранников: рёбра, диагонали, углы. Площадь боковой поверхности и полной поверхности прямой призмы, площадь оснований, теорема о боковой поверхности прямой призмы. Площадь боковой поверхности и поверхности правильной пирамиды, теорема о площади усечённой пирамиды. Понятие об объёме. Объём пирамиды,

призмы.

Подобные тела в пространстве. Соотношения между площадями поверхностей, объёмами подобных тел.

11 КЛАССЕ

Тела вращения.

Понятия: цилиндрическая поверхность, коническая поверхность, сферическая поверхность, образующие поверхностей. Тела вращения: цилиндр, конус, усечённый конус, сфера, шар. Взаимное расположение сферы и плоскости, касательная плоскость к сфере. Изображение тел вращения на плоскости. Развёртка цилиндра и конуса. Симметрия сферы и шара.

Объём. Основные свойства объёмов тел. Теорема об объёме прямоугольного параллелепипеда и следствия из неё. Объём прямой и наклонной призмы, цилиндра, пирамиды и конуса. Объём шара и шарового сегмента.

Комбинации тел вращения и многогранников. Призма, вписанная в цилиндр, описанная около цилиндра. Пересечение сферы и шара с плоскостью. Касание шара и сферы плоскостью. Понятие многогранника, описанного около сферы, сферы, вписанной в многогранник или тело вращения.

Площадь поверхности цилиндра, конуса, площадь сферы и её частей. Подобие в пространстве. Отношение объёмов, площадей поверхностей подобных фигур. Преобразование подобия, гомотетия. Решение задач на плоскости с использованием стереометрических методов.

Построение сечений многогранников и тел вращения: сечения цилиндра (параллельно и перпендикулярно оси), сечения конуса (параллельное основанию и проходящее через вершину), сечения шара, методы построения сечений: метод следов, метод внутреннего проектирования, метод переноса секущей плоскости.

Векторы и координаты в пространстве.

Векторы в пространстве. Операции над векторами. Векторное умножение векторов. Свойства векторного умножения. Прямоугольная система координат в пространстве. Координаты вектора. Разложение вектора по базису. Координатно-векторный метод при решении геометрических задач.

Движения в пространстве.

Движения пространства. Отображения. Движения и равенство фигур. Общие свойства движений. Виды движений: параллельный перенос, центральная симметрия, зеркальная симметрия, поворот вокруг прямой. Преобразования подобия. Прямая и сфера Эйлера.

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ УЧЕБНОГО КУРСА 10 КЛАСС

Базовый уровень		Углубленный уровень		
Название раздела (темы)	Количество часов	Название раздела(темы)	Количество часов	
Введение в стереометрию	10	Введение в стереометрию	23	
Прямые и плоскости в пространстве. Параллельность прямых и плоскостей	12	Взаимное расположение прямых в пространстве	6	
	Параллельность прямых и плоскостей в пространстве		8	
Перпендикулярность прямых и плоскостей	12	Перпенликупярность прямых и плоскостей в		
Углы между прямыми и плоскостями	10	Углы и расстояния	16	
Многогранники	11	Многогранники	7	
Объёмы многогранников	9	Векторы в пространстве	12	
Повторение: сечения, расстояния и углы	4	Повторение, обобщение и систематизация знаний	5	
ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ	68	ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ	102	

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ УЧЕБНОГО КУРСА 11 КЛАСС

Базовый уровень (34 часа)		Углубленный уровень (102 часа)		
Название раздела (темы)	Основное содержание	Название раздела (темы)	Основное содержание	
курса, (количество часов)		курса, (количество часов)		
Тела вращения (12 ч.)	Сфера и шар: центр, радиус, диаметр; площадь	Тела вращения (24 ч.)	Цилиндрическая поверхность,	
	поверхности сферы. Взаимное расположение		образующие цилиндрической	
	сферы и плоскости; касательная плоскость к		поверхности.	
	сфере; площадь сферы.		Цилиндр. Прямой круговой цилиндр.	
	Изображение сферы, шара на плоскости.		Площадь поверхности цилиндра.	
	Сечения шара		Коническая поверхность, образующие	
	Цилиндрическая поверхность, образующие		конической поверхности. Конус. Сечение	

цилиндрической поверхности, ось конуса плоскостью, параллельной цилиндрической поверхности. Цилиндр: плоскости основания. Усечённый конус. основания и боковая поверхность, Изображение конусов и усечённых образующая и ось; площадь боковой и полной конусов. Площадь боковой поверхности и полной поверхности. Изображение цилиндра на плоскости. Развёртка цилиндра. поверхности конуса Стереометрические Сечения цилиндра (плоскостью, параллельной задачи на доказательство и вычисление, или перпендикулярной оси цилиндра) построением сечений цилиндра, конуса. Коническая поверхность, образующие Прикладные задачи, связанные с конической поверхности, ось и вершина цилиндром. конической поверхности. Конус: основание и Сфера и шар. вершина, образующая и ось; площадь боковой Пересечение сферы и шара с плоскостью. Касание шара и сферы плоскостью. Вид и и полной поверхности. Усечённый конус: образующие и высота; изображение шара. основания и боковая поверхность. Уравнение сферы. Площадь сферы и её Изображение конуса на плоскости. Развёртка частей. Симметрия сферы и шара. конуса. Сечения конуса (плоскостью, параллельной Стереометрические задачи на доказательство и вычисление, связанные основанию, и плоскостью, проходящей через со сферой и шаром, построением их вершину) Комбинация тел вращения и многогранников. сечений плоскостью. Многогранник, описанный около сферы; Прикладные задачи, связанные со сферой сфера, вписанная в многогранник или в тело и шаром. Повторение: окружность на плоскости, вращения вычисления в окружности, стандартные подобия Различные комбинации тел вращения и многогранников. Задачи по теме «Тела и поверхности вращения» Повторение: координаты вектора на Аналитическая геометрия (15 ч.) плоскости и в пространстве, скалярное произведение векторов, вычисление угла между векторами в пространстве. Уравнение прямой, проходящей через две точки. Уравнение плоскости, нормаль, уравнение плоскости в отрезках Векторное произведение. Линейные неравенства, линейное программирование

	Аналитические методы расчёта угла
	<u> </u>
	между прямыми и плоско- стями в
	многогранниках. Формула расстояния от
	точки до плоскости в координатах.
	Нахождение расстояний от точки до
	плоскости в кубе и правильной пирамиде
Повторение, обобщение и	Сечения многогранников: стандартные
систематизация знаний (15	многогранники, метод следов,
ч.)	стандартные плоскости, пересечения
	прямых и плоскостей
	Параллельные прямые и плоскости:
	параллельные сечения, расчёт отношений,
	углы между скрещивающимися прямыми
	Перпендикулярные прямые и плоскости:
	стандартные пары перпендикулярных
	плоскостей и прямых, симметрии
	многогранников, теорема о трёх
	перпендикулярах, вычисления длин в
	многогранниках Повторение: площади
	многоугольников, формулы для
	площадей, соображения подобия.
	Площади сечений многогранников: площади
	поверхностей, разрезания на части,
	соображения подобия

		Объём многогранника (17 ч.)	Объём тела. Объём прямоугольного параллелепипеда. Задачи об удвоении куба, о квадратуре куба; о трисекции угла. Стереометрические задачи, связанные с объёмом прямоугольного параллелепипеда. Прикладные задачи, связанные с вычислением объёма прямоугольного параллелепипеда. Объём прямой призмы. Стереометрические задачи, связанные с вычислением объёмов прямой призмы. Прикладные задачи, связанные с объёмом прямой призмы. Вычисление объёмов тел с помощью определённого интеграла. Объём наклонной призмы, пирамиды. Формула объёма пирамиды. Отношение объемов пирамид с общим углом. Стереометрические задачи, связанные с объёмами наклонной призмы, пирамиды. Прикладные задачи по теме «Объёмы тел», связанные с объёмом наклонной призмы, пирамиды. Прижладные задачи по теме «Объёмы тел», связанные с объёмом наклонной призмы, пирамиды. Применение объёмов. Вычисление расстояния до плоскости
Объёмы тел (5 ч.)	Понятие об объёме. Основные свойства объёмов тел. Объём цилиндра, конуса. Объём шара и площадь сферы Подобные тела в пространстве. Соотношения между площадями поверхностей, объёмами подобных тел	Площади поверхности и объёмы круглых тел (9 ч.)	Объём цилиндра. Теорема об объёме прямого цилиндра. Площади боковой и полной поверхности цилиндра Вычисление объёмов тел с помощью определённого интеграла. Объём конуса. Площади боковой и полной поверхности конуса. Стереометрические задачи, связанные с вычислением объёмов цилиндра, конуса. Прикладные задачи по теме «Объёмы и площади поверхностей тел. Объём шара и шарового сектора. Теорема об объёме шара. Площадь сферы.

Векторы и координаты в	Вектор на плоскости и в пространстве.		Стереометрические задачи, связанные с вычислением объёмов шара, шарового сегмента, шарового сектора. Прикладные задачи по теме «Объёмы тел», связанные с объёмом шара и площадью сферы. Соотношения между площадями поверхностей и объёмами подобных тел. Подобные тела в пространстве. Изменение объёма при подобии. Стереометрические задачи, связанные с вычислением объёмов тел и площадей поверхностей
пространстве (10 ч.)	Сложение и вычитание векторов. Умножение вектора на число. Разложение вектора по трём некомпланарным векторам. Правило параллелепипеда. Решение задач, связанных с применением правил действий с векторами. Прямоугольная система координат в пространстве. Координаты вектора. Простейшие задачи в координатах. Угол между векторами. Скалярное произведение векторов. Вычисление углов между прямыми и плоскостями. Координатно-векторный метод при решении геометрических задач		
Повторение, обобщение и систематизация знаний (7 ч.)	Основные фигуры, факты, теоремы курса планиметрии. Задачи планиметрии и методы их решения. Основные фигуры, факты, теоремы курса стереометрии. Задачи стереометрии и методы их решения	Повторение, обобщение и систематизация знаний (22 ч.)	Обобщающее повторение понятий и методов курса геометрии 10–11 классов, систематизация знаний. История развития стереометрии как науки и её роль в развитии современных инженерных и компьютерных технологий

РАБОЧАЯ ПРОГРАММА УЧЕБНОГО КУРСА «ВЕРОЯТНОСТЬ И СТАТИСТИКА. БАЗОВЫЙ УРОВЕНЬ» 10-11 КЛАССЫ

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Рабочая программа учебного курса «Вероятность и статистика» базового уровня для обучающихся 10 —11 классов разработана на основе Федерального государственного образовательного стандарта среднего общего образования, с учётом современных мировых требований, предъявляемых к математическому образованию, и традиций российского образования. Реализация программы обеспечивает овладение ключевыми компетенциями, составляющими основу для саморазвития и непрерывного образования, целостность общекультурного, личностного и познавательного развития личности обучающихся.

ЦЕЛИ ИЗУЧЕНИЯ УЧЕБНОГО КУРСА

Учебный курс «Вероятность и статистика» базового уровня является продолжением и развитием одноимённого учебного курса базового уровня основной школы. Курс предназначен для формирования у обучающихся статистической культуры и понимания роли теории вероятностей как математического инструмента для изучения случайных событий, величин и процессов. При изучении курса обогащаются представления учащихся о методах исследования изменчивого мира, развивается понимание значимости и общности математических методов познания как неотъемлемой части современного естественно-научного мировоззрения.

Содержание курса направлено на закрепление знаний, полученных при изучении курса основной школы и на развитие представлений о случайных величинах и взаимосвязях между ними на важных примерах, сюжеты которых почерпнуты из окружающего мира.

В соответствии с указанными целями в структуре учебного курса «Вероятность и статистика» средней школы на базовом уровне выделены следующие основные содержательные линии: «Случайные события и вероятности», «Случайные величины и закон больших чисел».

Важную часть курса занимает изучение геометрического и биномиального распределений и знакомство с их непрерывными аналогами — показательным и нормальным распределениями.

Содержание линии «Случайные события и вероятности» служит основой для формирования представлений о распределении вероятностей между значениями случайных величин, а также эта линия необходима как база для изучения закона больших чисел — фундаментального закона, действующего в природе и обществе и имеющего математическую формализацию. Сам закон больших чисел предлагается в ознакомительной форме с минимальным использованием математического формализма.

Темы, связанные с непрерывными случайными величинами, акцентируют внимание школьников на описании и изучении случайных явлений с помощью непрерывных функций. Основное внимание уделяется показательному и нормальному распределениям,

при этом предполагается ознакомительное изучение материала без доказательств применяемых фактов.

МЕСТО КУРСА В УЧЕБНОМ ПЛАНЕ

На изучение курса «Вероятность и статистика» на базовом уровне отводится 1 час в неделю в течение каждого года обучения, всего 68 учебных часов.

СОДЕРЖАНИЕ УЧЕБНОГО КУРСА

10 КЛАСС

Представление данных с помощью таблиц и диаграмм. Среднее арифметическое, медиана, наибольшее и наименьшее значения, размах, дисперсия и стандартное отклонение числовых наборов.

Случайные эксперименты (опыты) и случайные события. Элементарные события (исходы). Вероятность случайного события. Близость частоты и вероятности событий. Случайные опыты с равновозможными элементарными событиями. Вероятности событий в опытах с равновозможными элементарными событиями.

Операции над событиями: пересечение, объединение, противоположные события. Диаграммы Эйлера. Формула сложения вероятностей.

Условная вероятность. Умножение вероятностей. Дерево случайного эксперимента. Формула полной вероятности. Независимые события.

Комбинаторное правило умножения. Перестановки и факториал. Число сочетаний. Треугольник Паскаля. Формула бинома Ньютона.

Бинарный случайный опыт (испытание), успех и неудача. Независимые испытания. Серия независимых испытаний до первого успеха. Серия независимых испытаний Бернулли.

Случайная величина. Распределение вероятностей. Диаграмма распределения. Примеры распределений, в том числе, геометрическое и биномиальное.

11 КЛАСС

Числовые характеристики случайных величин: математическое ожидание, дисперсия и стандартное отклонение. Примеры применения математического ожидания, в том числе в задачах из повседневной жизни. Математическое ожидание бинарной случайной величины. Математическое ожидание суммы случайных величин. Математическое ожидание и дисперсия геометрического и биномиального распределений.

Закон больших чисел и его роль в науке, природе и обществе. Выборочный метод исследований.

Примеры непрерывных случайных величин. Понятие о плотности распределения. Задачи, приводящие к нормальному распределению. Понятие о нормальном распределении.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ

ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ

Личностные результаты освоения программы учебного предмета «Математика» характеризуются:

Гражданское воспитание:

сформированностью гражданской позиции обучающегося как активного и ответственного члена российского общества, представлением о математических основах функционирования различных структур, явлений, процедур гражданского общества (выборы, опросы и пр.), умением взаимодействовать с социальными институтами в соответствии с их функциями и назначением.

Патриотическое воспитание:

сформированностью российской гражданской идентичности, уважения к прошлому и настоящему российской математики, ценностным отношением к достижениям российских математиков и российской математической школы, к использованию этих достижений в других науках, технологиях, сферах экономики.

Духовно-нравственного воспитания:

осознанием духовных ценностей российского народа; сформированностью нравственного сознания, этического поведения, связанного с практическим применением достижений науки и деятельностью учёного; осознанием личного вклада в построение устойчивого будущего.

Эстетическое воспитание:

эстетическим отношением к миру, включая эстетику математических закономерностей, объектов, задач, решений, рассуждений; восприимчивостью к математическим аспектам различных видов искусства.

Физическое воспитание:

сформированностью умения применять математические знания в интересах здорового и безопасного образа жизни, ответственного отношения к своему здоровью (здоровое питание, сбалансированный режим занятий и отдыха, регулярная физическая активность); физического совершенствования, при занятиях спортивно-оздоровительной деятельностью.

Трудовое воспитание:

готовностью к труду, осознанием ценности трудолюбия; интересом к различным сферам профессиональной деятельности, связанным с математикой и её приложениями, умением совершать осознанный выбор будущей профессии и реализовывать собственные жизненные планы; готовностью и способностью к математическому образованию и самообразованию на протяжении всей жизни; готовностью к активному участию в решении практических задач математической направленности.

Экологическое воспитание:

сформированностью экологической культуры, пониманием влияния социальноэкономических процессов на состояние природной и социальной среды, осознанием глобального характера экологических проблем; ориентацией на применение математических знаний для решения задач в области окружающей среды, планирования поступков и оценки их возможных последствий для окружающей среды.

Ценности научного познания:

сформированностью мировоззрения, соответствующего современному уровню развития науки и общественной практики, пониманием математической науки как сферы человеческой деятельности, этапов её развития и значимости для развития цивилизации; овладением языком математики и математической культурой как средством познания мира; готовностью

МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

Метапредметные результаты освоения программы учебного предмета «Математика» характеризуются овладением универсальными *познавательными* действиями, универсальными коммуникативными действиями, универсальными регулятивными действиями.

1) Универсальные познавательные действия, обеспечивают формирование базовых когнитивных процессов обучающихся (освоение методов познания окружающего мира; применение логических, исследовательских операций, умений работать с информацией).

Базовые логические действия:

- выявлять и характеризовать существенные признаки математических объектов, понятий, отношений между понятиями; формулировать определения понятий; устанавливать существенный признак классификации, основания для обобщения и сравнения, критерии проводимого анализа;
- воспринимать, формулировать и преобразовывать суждения: утвердительные и отрицательные, единичные, частные и общие; условные;
- выявлять математические закономерности, взаимосвязи и противоречия в фактах, данных, наблюдениях и утверждениях; предлагать критерии для выявления закономерностей и противоречий;
- делать выводы с использованием законов логики, дедуктивных и индуктивных умозаключений, умозаключений по аналогии;
- проводить самостоятельно доказательства математических утверждений (прямые и от противного), выстраивать аргументацию, приводить примеры и контрпримеры; обосновывать собственные суждения и выводы;
- выбирать способ решения учебной задачи (сравнивать несколько вариантов решения, выбирать наиболее подходящий с учётом самостоятельно выделенных критериев).

Базовые исследовательские действия:

- использовать вопросы как исследовательский инструмент познания; формулировать вопросы, фиксирующие противоречие, проблему, устанавливать искомое и данное, формировать гипотезу, аргументировать свою позицию, мнение;
- проводить самостоятельно спланированный эксперимент, исследование по установлению особенностей математического объекта, явления, процесса, выявлению зависимостей между объектами, явлениями, процессами;
- самостоятельно формулировать обобщения и выводы по результатам проведённого наблюдения, исследования, оценивать достоверность полученных результатов, выводов и обобщений;
- прогнозировать возможное развитие процесса, а также выдвигать предположения о его развитии в новых условиях.

Работа с информацией:

- выявлять дефициты информации, данных, необходимых для ответа на вопрос и для решения задачи;
- выбирать информацию из источников различных типов, анализировать, систематизировать и интерпретировать информацию различных видов и форм представления;
- структурировать информацию, представлять её в различных формах, иллюстрировать графически;

- оценивать надёжность информации по самостоятельно сформулированным критериям.
- 2) Универсальные коммуникативные действия, обеспечивают сформированность социальных навыков обучающихся.

Общение:

- воспринимать и формулировать суждения в соответствии с условиями и целями общения; ясно, точно, грамотно выражать свою точку зрения в устных и письменных текстах, давать пояснения по ходу решения задачи, комментировать полученный результат;
- в ходе обсуждения задавать вопросы по существу обсуждаемой темы, проблемы, решаемой задачи, высказывать идеи, нацеленные на поиск решения; сопоставлять свои суждения с суждениями других участников диалога, обнаруживать различие и сходство позиций; в корректной форме формулировать разногласия, свои возражения;
- представлять результаты решения задачи, эксперимента, исследования, проекта; самостоятельно выбирать формат выступления с учётом задач презентации и особенностей аудитории.

Сотрудничество:

- понимать и использовать преимущества командной и индивидуальной работы при решении учебных задач; принимать цель совместной деятельности, планировать организацию совместной работы, распределять виды работ, договариваться, обсуждать процесс и результат работы; обобщать мнения нескольких людей;
- участвовать в групповых формах работы (обсуждения, обмен мнений, «мозговые штурмы» и иные); выполнять свою часть работы и координировать свои действия с другими членами команды; оценивать качество своего вклада в общий продукт по критериям, сформулированным участниками взаимодействия.
- 3) Универсальные регулятивные действия, обеспечивают формирование смысловых установок и жизненных навыков личности.

Самоорганизация:

составлять план, алгоритм решения задачи, выбирать способ решения с учётом имеющихся ресурсов и собственных возможностей, аргументировать и корректировать варианты решений с учётом новой информации.

Самоконтроль:

- владеть навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов; владеть способами самопроверки, самоконтроля процесса и результата решения математической задачи;
- предвидеть трудности, которые могут возникнуть при решении задачи, вносить коррективы в деятельность на основе новых обстоятельств, данных, найденных ошибок, выявленных трудностей;
- оценивать соответствие результата цели и условиям, объяснять причины достижения или недостижения результатов деятельности, находить ошибку, давать оценку приобретённому опыту.

ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

10 КЛАСС

Читать и строить таблицы и диаграммы.

Оперировать понятиями: среднее арифметическое, медиана, наибольшее, наименьшее

значение, размах массива числовых данных.

Оперировать понятиями: случайный эксперимент (опыт) и случайное событие, элементарное событие (элементарный исход) случайного опыта; находить вероятности в опытах с равновозможными случайными событиями, находить и сравнивать вероятности событий в изученных случайных экспериментах.

Находить и формулировать события: пересечение и объединение данных событий, событие, противоположное данному событию; пользоваться диаграммами Эйлера и формулой сложения вероятностей при решении задач.

Оперировать понятиями: условная вероятность, независимые события; находить вероятности с помощью правила умножения, с помощью дерева случайного опыта.

Применять комбинаторное правило умножения при решении задач.

Оперировать понятиями: испытание, независимые испытания, серия испытаний, успех и неудача; находить вероятности событий в серии независимых испытаний до первого успеха; находить вероятности событий в серии испытаний Бернулли.

Оперировать понятиями: случайная величина, распределение вероятностей, диаграмма распределения.

11 КЛАСС

Сравнивать вероятности значений случайной величины по распределению или с помощью диаграмм.

Оперировать понятием математического ожидания; приводить примеры, как применяется математическое ожидание случайной величины находить математическое ожидание по данному распределению.

Иметь представление о законе больших чисел. Иметь представление о нормальном распределении.

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ 10 КЛАСС

N₂	Наименование разделов и тем программы	Количес	тво часов	Электронные	
п/п		Всего	Контрольн ые работы	Практическ ие работы	(цифровые) образовательные ресурсы
1	Представление данных и описательная статистика	4			
2	Случайные опыты и случайные события, опыты с равновозможными элементарными исходами	3		1	
3	Операции над событиями, сложение вероятностей	3			
4	Условная вероятность, дерево случайного опыта, формула полной вероятности и независимость событий	6			
5	Элементы комбинаторики	4			
6	Серии последовательных испытаний	3		1	
7	Случайные величины и распределения	6			
8	Обобщение и систематизация знаний	5	2		
ОБП	ЦЕЕ КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ	34	2	2	

11 КЛАСС

N₂	Наименование разделов и тем программы	Количество часов			Электронные
п/п		Всего	Контрольн ые работы	Практическ ие работы	(цифровые) образовательные ресурсы
1	Математическое ожидание случайной величины	4			
2	Дисперсия и стандартное отклонение случайной величины	4		1	
3	Закон больших чисел	3		1	
4	Непрерывные случайные величины (распределения)	2			
5	Нормальное распределения	2		1	
6	Повторение, обобщение и систематизация знаний	19	2		
ОБЦ	<u> ЦЕЕ КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ</u>	34	2	3	

УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ОБЯЗАТЕЛЬНЫЕ УЧЕБНЫЕ МАТЕРИАЛЫ ДЛЯ УЧЕНИКА

- Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа (в 2 частях), 10-11 классы/ Часть 1: Мордкович А.Г., Семенов П.В.; Часть 2: Мордкович А.Г. и другие; под редакцией Мордковича А.Г., Общество с ограниченной ответственностью «ИОЦ МНЕМОЗИНА»
- Математика: алгебра и начала математического анализа, геометрия. Геометрия, 10-11 классы/ Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и другие, Акционерное общество «Издательство «Просвещение»

МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ДЛЯ УЧИТЕЛЯ

ЦИФРОВЫЕ ОБРАЗОВАТЕЛЬНЫЕ РЕСУРСЫ И РЕСУРСЫ СЕТИ ИНТЕРНЕТ